Đề cương ôn tập học kì I Đại số lớp 8 - Năm học 2017-2018 - Trường THCS Giá Rai B

Bài 11:        

1. Tìm n để đa thức x4 – x3 + 6x2 – x + n chia hết cho đa thức x2 – x + 5

2. Tìm n để đa thức 3x3 + 10x2 – 5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2 + n – 7 chia hết cho n – 2.


 

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

a. A = x2 – 6x + 11          b. B = x2 – 20x + 101      

c. C = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

a. A = 4x – x2 + 3            b. B = – x2 + 6x – 11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên

2. a(2a – 3) – 2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2 + 2x + 2 > 0 với mọi x

4. x2 – x + 1 > 0 với mọi x

5. –x2 + 4x – 5 < 0="" với="" mọi="">

doc 9 trang Hải Anh 14/07/2023 1980
Bạn đang xem tài liệu "Đề cương ôn tập học kì I Đại số lớp 8 - Năm học 2017-2018 - Trường THCS Giá Rai B", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docde_cuong_on_tap_hoc_ki_i_dai_so_lop_8_nam_hoc_2017_2018_truo.doc

Nội dung text: Đề cương ôn tập học kì I Đại số lớp 8 - Năm học 2017-2018 - Trường THCS Giá Rai B

  1. Trường THCS Gía Rai B e. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) f. (2x3 – 5x2 + 6x – 15) : (2x – 5) Bài 11: 1. Tìm n để đa thức x4 – x3 + 6x2 – x + n chia hết cho đa thức x2 – x + 5 2. Tìm n để đa thức 3x3 + 10x2 – 5 + n chia hết cho đa thức 3x + 1 3*. Tìm tất cả các số nguyên n để 2n2 + n – 7 chia hết cho n – 2. Bài 12: Tìm giá trị nhỏ nhất của biểu thức a. A = x2 – 6x + 11 b. B = x2 – 20x + 101 c. C = x2 – 4xy + 5y2 + 10x – 22y + 28 Bài 13: Tìm giá trị lớn nhất của biểu thức a. A = 4x – x2 + 3 b. B = – x2 + 6x – 11 Bài 14: CMR 1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên 2. a(2a – 3) – 2a(a + 1) chia hết cho 5 với a là số nguyên 3. x2 + 2x + 2 > 0 với mọi x 4. x2 – x + 1 > 0 với mọi x 5. –x2 + 4x – 5 < 0 với mọi x Chương II * Dạng toán rút gọn phân thức Bài 1. Rút gọn phân thức: 6x2 y2 3(x y)(x z)2 a. 3x(1 x) b. c. 2(x 1) 8xy5 6(x y)(x z) Bài 2: Rút gọn các phân thức sau: x2 16 x2 4x 3 a) (x 0, x 4) b) (x 3) 4x x2 2x 6 15x(x y)3 5(x y) 3(y x) c) (y (x y) 0) d) (x y) 5y(x y)2 10(x y) 2x 2y 5x 5y x2 xy e) (x y) f) (x y,y 0) 2x 2y 5x 5y 3xy 3y2 2ax2 4ax 2a 4x2 4xy g) (b 0, x 1) h) (x 0, x y) 5b 5bx2 5x3 5x2y (x y)2 z2 x6 2x3y3 y6 i) (x y z 0) k) (x 0, x y) x y z x7 xy6 Bài 3: Rút gọn, rồi tính giá trị các phân thức sau: (2x2 2x)(x 2)2 1 x3 x2y xy2 a) A với x b) B với x 5,y 10 (x3 4x)(x 1) 2 x3 y3 Bài 4; Rút gọn các phân thức sau: a b 2 c2 2 2 2 3 2 a) ( ) b) a b c 2ab c) 2x 7x 12x 45 a b c a2 b2 c2 2ac 3x3 19x2 33x 9 * Dạng toán ; Thực hiện phép tính đối với phân thức Bài 6. Thực hiện các phép tính CV : Nguyễn Quang Chính
  2. Trường THCS Gía Rai B x y x y x2 y2 xy 1 1 1 g) . 1 . h) x y x y 2xy x2 y2 (a b)(b c) (b c)(c a) (c a)(a b) a2 (b c)2 (a b c) x2 y2 1 x2 y2 x y i) k) : (a b c)(a2 c2 2ac b2) xy x y y x x Bài 10: Rút gọn các biểu thức sau: 1 1 x x 1 2 1 x y x a) b) x 1 x c) 1 d) x 1 1 1 x x 1 x x2 2 1 1 x y x 1 x x 1 x2 1 Bài 11: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên: 2 6 x 2 2x 3 a) b) c) d) x 1 3x 2 x 1 x 5 x3 x2 x3 x2 x3 x2 x e) 2 f) 2 4 g) 2 2 2 x 1 x 2 2x 1 x3 x2 x 4 h) 3 7 11 1 i ) x 16 3x 1 x4 4x3 8x2 16x 16 Bài 12 * Tìm các số A, B, C để có: x2 x 2 A B C x2 2x 1 A Bx C a) b) (x 1)3 (x 1)3 (x 1)2 x 1 (x 1)(x2 1) x 1 x2 1 Bài 13 * Tính các tổng: a b c a)A b) (a b)(a c) (b a)(b c) (c a)(c b) a2 b2 c2 B (a b)(a c) (b a)(b c) (c a)(c b) Bài 14 * Tính các tổng: 1 1 1 1 1 1 1 a) A HD: 1.2 2.3 3.4 n(n 1) k(k 1) k k 1 1 1 1 1 1 1 1 1 1 b) B HD: 1.2.3 2.3.4 3.4.5 n(n 1)(n 2) k(k 1)(k 2) 2 k k 2 k 1 Bài 15 * Chứng minh rằng với mọi m N , ta có: 4 1 1 4 1 1 1 a) b) 4m 2 m 1 (m 1)(2m 1) 4m 3 m 2 (m 1)(m 2) (m 1)(4m 3) 4 1 1 1 c) 8m 5 2(m 1) 2(m 1)(3m 2) 2(3m 2)(8m 5) 4 1 1 1 d) 3m 2 m 1 3m 2 (m 1)(3m 2) Bài 16: Tìm các giá trị của biến số x để phân thức sau bằng không: x x2 x x a) 2 1 b) c) 2 3 d) (x 1)(x 2) 5x 10 2x 4x 5 x2 4x 3 2 2 e) (x 1)(x 2) f) x 1 g) x 4 x2 4x 3 x2 2x 1 x2 3x 10 CV : Nguyễn Quang Chính
  3. Trường THCS Gía Rai B x 3 8x2 3x 1 Bài 3: Cho biểu thức: P 1 2 : 3 2 2 x 5x 6 4x 8x 12 3x x 2 a/ Rút gọn P. b/ Tìm các giá trị của x để P=0; P=1. c/ Tìm các giá trị của x để P>0 Bài5 a/ Tìm x biết: x 5 2 x 5 x 5 20 b/ Tìm x biết: 2x2 – x – 1 = 0 Bài 6: a/ Tìm giá trị lớn nhất của biểu thức: Q x2 4x 9 b/ Tìm giá trị lớn nhất của biểu thức: M = x( 6- x ) + 74 + x Bài 7: Tìm x và y biết: x 2-4x + 5+y 2 +2y Bài 8: Tìm giá trị nhỏ nhất của biểu thức A = x2 - 4x + 1 Bài 9 : a/ Tìm giá trị nhỏ nhất của biểu thức : A = x2 – 6x + 11 b/ Tìm giá trị lớn nhất của biểu thức : B = 5x – x2 , khi đó giá trị x bằng bao nhiêu. Bài 10: Chứng minh : a/ a b 2 b 2 a a 2b b/ n3 3n 2 n 3 chia hết cho 48 vói mọi số nguyên lẻ n. 2 Bài 11: Cho đa thức M a 2 b 2 c 2 4a 2b 2 a/ Phân tích đa thức ra nhân tử b/ Chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M 0 với x Z 4/ x2-x+1>0 với x Z 5/ -x2+4x-5 < 0 với x Z Bài 20: 1/Tìm n để đa thức x4 - x3 + 6x2 - x + n chia hết cho đa thức x2 - x + 5 2/Tìm n để đa thức 3x3 + 10x2 - 5 + n chia hết cho đa thức 3x + 1 3/ Xác định a để đa thức x3 – 3x + a chia hết cho (x – 1)2 ? CV : Nguyễn Quang Chính
  4. Trường THCS Gía Rai B Bài 10. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D. a. Chứng minh rằng điểm E đối xứng với điểm M qua AB. b. Các tứ giác AEMC, AEBM là hình gì? Vì sao? c. Cho BC = 4cm, tính chu vi tứ giác AEBM. CV : Nguyễn Quang Chính