SKKN Một số kinh nghiệm rèn kỹ năng giải toán điển hình ở lớp 4

Trong chương trình toán ở tiểu học, việc giải các bài toán chiếm một vị trí
rất quan trọng. Được thể hiện qua các khái niệm toán học, các quy tắc toán học đều
được giảng dạy thông qua giải toán. Việc giải toán giúp học sinh củng cố vận dụng
các kiến thức, rèn luyện kĩ năng tính toán . Đồng thời qua việc giải toán cho học
sinh mà giáo viên có thể dễ dàng phát hiện những mặt mạnh, mặt yếu của từng em
về kiến thức, kĩ năng và tư duy để từ đó giúp học sinh phát huy được tính chủ động
sáng tạo trong học tập. 
pdf 13 trang Hải Anh 11/07/2023 2160
Bạn đang xem tài liệu "SKKN Một số kinh nghiệm rèn kỹ năng giải toán điển hình ở lớp 4", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfskkn_mot_so_kinh_nghiem_ren_ky_nang_giai_toan_dien_hinh_o_lo.pdf

Nội dung text: SKKN Một số kinh nghiệm rèn kỹ năng giải toán điển hình ở lớp 4

  1. PHẦN THỨ NHẤT: ĐẶT VẤN ĐỀ Trong chương trình toán ở tiểu học, việc giải các bài toán chiếm một vị trí rất quan trọng. Được thể hiện qua các khái niệm toán học, các quy tắc toán học đều được giảng dạy thông qua giải toán. Việc giải toán giúp học sinh củng cố vận dụng các kiến thức, rèn luyện kĩ năng tính toán . Đồng thời qua việc giải toán cho học sinh mà giáo viên có thể dễ dàng phát hiện những mặt mạnh, mặt yếu của từng em về kiến thức, kĩ năng và tư duy để từ đó giúp học sinh phát huy được tính chủ động sáng tạo trong học tập. Hướng dẫn học sinh tìm ra lời giải đúng và hay là rất khó. Đại đa số giáo viên chỉ hướng dẫn học sinh giải các bài toán trong sách giáo khoa, ít khi đề cập đến các bài toán khác trong các tài liệu tham khảo. Chính vì thế việc rèn kĩ năng giải toán điển hình còn có phần hạn chế. Để dạy tốt các dạng toán này điều trước tiên mỗi giáo viên phải thực sự yêu nghề mến trẻ, thực sự quan tâm đến học sinh từ đó phải đầu tư nghiên cứu đề ra những biện pháp cụ thể cho từng tiết dạy. Từ những điều này tôi thấy việc cần phải rèn kĩ năng giải toán điển hình cho học sinh là quan trọng. Song bản thân tôi không có tham vọng lớn mà chỉ cố gắng nghiên cứu tìm tòi nhằm đáp ứng được phần nào trong việc đổi mới và nâng cao chất lượng dạy học. Vì lẽ đó năm học 2013-2014 này tôi đã chọn nội dung “ Rèn kỹ năng giải toán điển hình ở lớp 4” để nghiên cứu và áp dụng vào công tác giảng dạy của mình. PHẦN THỨ HAI: NỘI DUNG I.THỰC TRẠNG : 1. Đối với giáo viên: Trong quá trình dạy học có thể nói người giáo viên còn chưa có sự chú ý đúng mức tới việc làm thế nào để đối tượng học sinh nắm vững được lượng kiến thức, đặc biệt là các bài toán điển hình. Nguyên nhân là do giáo viên phải dạy nhiều môn, thời gian dành để nghiên cứu, tìm tòi những phương pháp dạy học phù hợp với đối tượng học sinh trong lớp còn hạn chế. Do vậy, chưa lôi cuốn được sự tập trung chú ý nghe giảng của học sinh. Bên cạnh đó nhận thức về vị trí, tầm quan 2
  2. Cho học sinh phân tích và giải bài mẫu về loại toán điển hình đó. Những bài toán được chọn làm mẫu này nên có số liệu không lớn quá và có dạng tiêu biểu nhất chứa dựng tất cả những đặc điểm chung của loại toán điển hình cần học để học sinh có thể tập trung chú ý được vào khâu nhận dạng loại toán và rút ra được cách giải tổng quát. VD3: Dạy phần bài mới của tiết: “Bài toán tìm 2 số biết tổng và hiệu của chúng”- lớp 4. * Giáo viên đọc đề toán “ Mẹ cho hai anh em tất cả 10 cái kẹo, em được nhiều hơn anh 2 cái. Hỏi số kẹo của anh và số kẹo của em?” * Tổ chức làm việc trên đồ dùng học tập. - Mỗi học sinh lấy 10 nắp bia ( tượng trưng cho 10 cái kẹo ) khoanh phần trên mặt bàn thành 2 vòng: vòng lớn chứa số kẹo của em, vòng nhỏ chứa số kẹo của anh. - Em được nhiều hơn anh 2 cái kẹo. Vậy ta lấy 2 cái kẹo cho em trước rồi chia đôi phần còn lại. Hãy lấy 2 cái kẹo cho em trước (học sinh đặt 2 nắp bia vào vòng lớn). + “Còn lại mấy cái kẹo?” (10 - 2 = 8 cái) + Bây giờ chia đều cho 2 anh em. Mỗi phần được mấy cái? (8 : 2 = 4 cái). Học sinh bỏ vòng, mỗi vòng 4 nắp bia. - Vậy anh được mấy cái kẹo? (4 cái). - Còn em được mấy cái kẹo? (2 + 4 = 6 cái) *Giáo viên hướng dẫn nhận dạng trên sơ đồ tóm tắt. - Bài toán yêu cầu tìm 2 số: trong này có 1 số lớn (số kẹo của em) và 1 số bé (số kẹo của anh). Ta biểu thị số lớn bằng một đoạn thẳng dài, số bé bằng một đoạn ngắn hơn. Số lớn: Số bé: - Bài toán cho biết gì? ( có tất cả 10 cái kẹo, em được nhiều hơn anh 2 cái). - Đúng vậy: Có tất 10 cái kẹo, nghĩa là tổng của 2 số là 10. Em được nhiều hơn 2 cái nghĩa là hiệu của 2 số đó là 2 (giáo viên vẽ tiếp vào tóm tắt để có) 4
  3. *Làm tương tự để hướng dẫn cách giải thứ 2. - Bước3: Học sinh giải 1 số bài toán tương tự với bài mẫu song thay đổi “văn cảnh” và số liệu để học sinh có khả năng nhận dạng loại toán và giải bài toán. - Bước 4: Cho học sinh giải các bài toán phức tạp dần. Chẳng hạn bài toán có thêm câu hỏi hay có câu hỏi khác với câu hỏi bài mẫu để sau khi giải như bài mẫu học sinh phải làm thêm 1, 2 phép tính nữa mới ra đáp số. Thay đổi dữ liệu để học sinh phải giải trước những bước trung gian rồi mới áp dụng được cách giải như bài mẫu. - Bước 5: Cho giải xen kẽ 1, 2 bài toán thuộc loại khác đã học nhưng có dạng na ná tương tự loại toán đang học (tương tự về nội dung, về cách nêu dữ liệu hoặc về một bước giải nào đó ) để tránh cách suy nghĩ máy móc, dập khuôn. - Bước 6: Cho học sinh tự lập đề toán thuộc loại toán điển hình đang học. *Rèn kỹ năng cho học sinh sau khi đã biết cách giải. Cụ thể: các loại bài rèn KN dạng toán “Tìm 2 số khi biết tổng và hiệu của 2 số đó”. Giải các bài toán nâng dần mức độ phức tạp trong mối quan hệ giữa số đã cho và số phải tìm: Bài toán 1: Tuổi của chị và tuổi của em cộng lại được 32 tuổi. Em kém chị 8 tuổi. Hỏi em bao nhiêu tuổi, chị bao nhiêu tuổi? Tóm tắt: Tuổi em: ? Tuổi chị: 8 tuổi Bài giải: Hai lần tuổi em là 32 - 8 = 24 (tuổi). Tuổi em là: 24 : 2 = 12 (tuổi) Tuổi chị là: 12 + 8 = 20 (tuổi) 6
  4. - Đưa bài toán về dạng cơ bản. + Biết nửa chu vi có nghĩa là biết gì? (tổng dài + rộng). + Viết thêm 2 vào chiều rộng được chiều dài nghĩa là gì? (chiều dài hơn chiều rộng 200 đơn vị). + Đây là bài toán ở dạng nào? (tìm 2 số khi biết tổng và hiệu). 2. Giải bài toán có nhiều cách giải. * Ví dụ: Bài toán: Tìm 2 số chẵn liên tiếp có tổng bằng số chẵn lớn nhất có 2 chữ số. Giải Cách 1: Hai lần số bé là 98 - 2 = 96 Số bé là 96 : 2 = 48 Số lớn là 48 + 2 = 50 Cách 2: Hai lần số lớn là 98 + 2 = 100 Số lớn là 100 : 2 = 50 Số bé là 50 - 2 = 48 Cách 3: Trung bình cộng của 2 số là 98 : 2 = 49 Số chẵn lớn là 49 + 1 = 50 Số chẵn bé là 49 - 1 = 48 ĐS: 48 và 50 3.Tiếp xúc với các bài toán thừa dữ kiện, thiếu dữ kiện hoặc điều kiện của bài toán. 8
  5. a = 4 thì b ≠ 0 ta có a - b = 4 (sai) 5. Lập và biến đổi bài toán a) Đăt câu hỏi cho bài toán mới chỉ biết số liệu hoặc điều kiện của bài toán. Ví dụ: Bài toán: Hai đội làm đường cùng đắp chung 1 quãng đường dài 800m. Đội thứ nhất đắp được ít hơn đội thứ 2 là 136m. Hỏi cả 2 đội đắp được bao nhiêu m đường? Hỏi mỗi đội đào được bao nhiêu m? b) Đặt điều kiện cho bài toán. Bài toán: Tổng của 1 số có 2 chữ số và viết số theo thứ tự ngược lại bằng . * 7* . Tìm số đó biết hiệu giữa hàng chục và hàng đơn vị là 2. Hướng dẫn học sinh tìm ra điều kiện. Gọi 2 số phải tìm là ab viết ngược lại ba theo bài ra ta có: ab + ba = *7* a - b = 2 nếu a = 0 = > b = 0 ta có 00 + 00 = *7* a - b = 2 (sai) Do đó điều kiện của bài là: a ≠ 0; b ≠ 0; a ≥ 1. Giải Hằng trăm của tổng phải bằng 1, hàng đơn vị và hàng chục đều có a + b mà tổng có chữ số nên a + b = 17 - 1 = 16 . Mà theo đầu bài: a - b = 2, do đó ta có. a = (16 + 2) : 2 = 9 b = 16 - 9 = 7 ĐS: 97 c) Chọn số hoặc số đo đại lượng còn thiếu của bài toán. Bài toán: Một cửa hàng bán được 215m vải hoa và trắng. Sau đó cửa hàng bán thêm 37m vải hoa và trắng. Như vậy cửa hàng đã bán vải hoa nhiều hơn vải trắng. Hỏi cửa hàng bán đã bán được bao nhiêu m vải hoa, bao nhiêu m vải trắng. Tổng số m vải hoa và vải trắng của cửa hàng đã bán được bao nhiêu? 215 + 37 = 252 (m) Bài toán còn thiếu gì? (hiệu số) 10
  6. chọn các phương pháp dạy tốt. khi dạy học sinh lớp 4 giải toán, điển hình với mỗi loại toán giáo viên không chỉ giúp học sinh giải đúng bài tập trong sách giáo khoa mà cần rèn khả năng giải loại toán đó, đặt ra các tình huống để các em suy nghĩ, tìm tòi cách giải khác nhau. 2. Đối với học sinh. Học sinh phải tự giác tích cực tiếp thu kiến thức nhằm trang bị cho mình những kỹ năng thực hành giải toán thành thạo. Học sinh phải nắm vững phương pháp chung để giải các bài toán điển hình. Từ đó, suy nghĩ tìm tòi cách giải khác nhau. Trên đây một số kinh nghiệm của tôi, khi viết không tránh khỏi sự thiếu sót.Tôi rất mong được đón nhận những ý kiến góp ý chân thành của các bạn đồng nghiệp cũng như các nhận xét bổ ích của các cấp lãnh đạo để góp phần nâng cao chất lượng dạy học môn Toán ở trường Tiểu học. Hộ Phòng, ngày 09 tháng 05 năm 2014 Người viết ĐỖ THANH THÚY 12